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q colourings of the triangular lattice 

R J Baxter 
Research School of Physical Sciences, The Australian National University, Canberra 2601, 
Australia 

Received 9 December 1985 

Abstract. Nienhuis has shown that the critical O(n) model on the honeycomb lattice is 
equivalent to a zero-temperature antiferromagnetic Potts model on the triangular lattice, 
i.e. to the chromatic polynomial of the triangular lattice. Here the critical O( n )  model is 
solved by the Bethe ansatz method, thereby giving the large-lattice limit of the chromatic 
polynomial. 

1. Introduction 

Consider a honeycomb lattice ZH with 2 N  sites, or vertices. Place arrows on some 
(or none) of the edges so that at each vertex there are either no arrows, or just one 
arrow in and just one arrow out. The arrows therefore form oriented loops on ZH, 
so let us call this the ‘loop model’. For a given configuration C, let L be the number 
of arrows, I the number of vertices at which there are two arrows forming a left turn 
and r the number where the arrows form a right turn. Let t and a be given parameters 
and define the partition sum to be 

exp[ia(l- r ) ] .  t 2 N - L  
ZLoop = c 

C 

Also, consider the Potts model on a triangular lattice LtT of N sites. At each site 
i there is a spin ui, with values 1,2, . . . , q. Neighbouring spins interact, having energy 
-kTJ if they are equal, 0 if different. The partition function is 

where the inner sum is over all 3 N nearest-neighbour pairs ( i ,  j )  of sites and the outer 
sum is over all q N  values of all the spins. 

Nienhuis (1982, 1984) shows that the partition sum of the O(n) model can be 
written as that of a loop model (his x is here replaced by r - I ) .  Further, he shows that 
both the loop and Potts models are equivalent to six-vertex models on a Kagomi lattice 
of 3 N  sites. They are equivalent to the same six-vertex model (and hence to one 
another) when t ,  a, q, J satisfy the relations 

2 COS 6 a  = 2-(2-  t2)’ (1.3a) 

q = 4- t 2  = 2-2 sin 3 a  

e’ =o. 
(1.3b) 

( 1 . 3 ~ )  
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In fact, when these are satisfied we have precisely (with appropriate boundary condi- 
tions) 

(1.4) 
Nienhuis argues that these equations determine the critical point-of the loop and 

O ( n )  models (for a real and Os 4 6 4 ) .  By taking s in3a =2-1/2, cos6a =0,  one can 
deduce that the connective constant for self-avoiding walks on the honeycomb lattice 
is t = (2+d2)’/’ (Guttmann 1984). 

In early 1983, while we were both at a conference in Adelaide, A J Guttmann 
introduced me to Nienhuis’ loop model and I was able to convince myself that it could 
be solved by a Bethe ansatz, provided the condition (1.3a) was satisfied. When I looked 
at Nienhuis’ paper myself and saw the mapping to a Potts model, I assumed this had 
to be the ferromagnetic critical case, when (e’ - l)2(eJ + 2) = q. Since this had previously 
been solved (Baxter et al 1978), there seemed little point in doing so again by another 
route. 

However, very recently A D Sokal made me look more carefully at Nienhuis’ paper, 
making me realise that the associated triangular Potts model is not the usual ferromag- 
netic critical case, but satisfies (1 .3~) .  This is the zero-temperature limit of the antifer- 
romagnetic case, when two adjacent spins cannot be equal (i.e. this configuration has 
zero weight). This is a very interesting case, for we can now interpret the spins as 
‘colours’: from (1.2), ZPotts is then the number of ways of colouring the sites of -YT 
with q colours so that no two adjacent sites have the same colour. This is the chromatic 
polynomial of LfT ; chromatic polynomials of large planar graphs are extensively studied 
in graph theory and there are some interesting conjectures concerning the location of 
their zeros (Beraha et a1 1980). Until now the chromatic polynomials of the large 
regular lattices have defied calculation. (For general values of J the Potts model is 
equivalent to the dichromatic polynomial (see Kasteleyn and Fortuin 1969).) 

Naturally I looked again at the loop model. It can indeed be solved by the Bethe 
ansatz when (1.3a) is satisfied, and the working is outlined in the following sections. 
Consequently one can evaluate the Nth root of the chromatic polynomial: 

w = zxyp = Zg& 

q = 2 - x - x  - 1  

(1.5) 

- 1 < x < o .  (1.6) 

in the large-lattice limit. For q real, q > 4, one can define a parameter x by 

Then the result of the calculation is 

For 3 6 q < 4, we define B by 

q = 2 + 2 c o s e  O <  (3s r/3 

and find that 

(1.7) 

sinh k( 7 ~ / 2  - e )  cosh k( 7 ~ / 2  - 0 )  In W =  
d k y ( [ ~ i n h ( ~ k / 2 ) ] ( 2  cosh kB - l)-[cosh(rk/2)](2 cosh kB+ 1) 

(1.9) 
There are some checks on the calculation. For q large, Kim and Enting (1979) 

have obtained the first 13 terms of the expansion of W in powers of l / (q  - 1); they 
agree with the result (1.7). When q = 3 there are just 3! ways of colouring -YT (one 
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colour for each of the three sublattices); in this t9 = 7r/3 and the integrand of (1.9) 
vanishes, correctly giving W = 1 .  The case q = 4 can be obtained by either taking the 
x + -1  limit in (1.7) or the t9 + 0 limit in (1.9). Either way one obtains 

05 

W = n  (3j-1)2 = 3y3/47r2 = 1.460 9 9 . .  . 
j = l  (3j - 2)3j 

(1.10) 

where y = r( 1/3) = 2.678 9385 , . . , This agrees with the known value (Baxter 1970). 
If we require q to be a positive integer, then the above results are completed by 

noting that W = 0 for q = 1 and 2. However, since ZPotts is just a polynomial in q, we 
can regard q as a real or complex variable. 

The transfer matrix of the loop model is defined in 0 2. In 0 3 it is shown how its 
eigenvalues can be obtained by adapting the Bethe cnsatz method employed by Lieb 
for planar models (Lieb 1967, Lieb and Wu 1972). This gives each eigenvalue in terms 
of n complex numbers z , ,  . , . , z,, which are in turn defined by n equations.. There 
are many solutions, corresponding to the different eigenvalues, and one has to find 
the solution corresponding to the eigenvalue of largest modulus. This is done in 0 4 
by using continuity from the easily handled q = CO case. We assume that the eigenvalue 
thus selected remains the largest contributing eigenvalue. From the independent checks 
mentioned above, it seems that this assumption is justified, at least for q real and q 3 3. 

For other values of q, in particular for 0 < q < 3, one has to be very careful. There 
are two problems: one is that it is possible that the previously largest eigenvalue may 
be surpassed by another. In fact this is necessary if the partition function is to have 
zeros, and we know from the graph theorists (Tutte 1973, 1982, Beraha et a1 1978, 
Beraha and Kahane 1979) that the chromatic polynomial does have zeros on and close 
to the segment (0 ,4)  of the real axis. 

A more fundamental difficulty is that the equivalence (1.4) should be treated with 
caution. For instance, in (2.1) it is shown that Zloop can be written as a sum weighted 
by cos 6 a  to the power of the number of loops on TH. If we take 2 cos 6 a  = 1 the 
model is equivalent to the triangular Ising model (put Ising spins on the faces of ZH 
so that adjacent spins are different if a loop lies on the intervening edge, the same if 
no loop lies on it), with exp(2JlkT) = t. From (1.3a), t 2  = 1 or 3, from which it follows 
that the Ising model is either non-interacting or critical. Either way one obtains 
ZLoop22N. On the other hand, from (1.3b) q is either 3 or 1,  so ZPotts is 6 or 0. 

We can resolve this apparent contradiction by repeating Nienhuis’ argument for a 
finite lattice. We start by writing the triangular Potts model as a KagomC lattice 
six-vertex model, as has been done by Baxter et a1 (1976). We interpret this as an SOS 

model by placing spins on faces of the KagomC lattice, adjacent spins differing by i, 
the greater being to the left of the intervening arrow. Choosing the hexagonal 
(triangular) faces to have integer (half-integer) spins and taking J = -CO, we can sum 
over the half-integer spins to obtain Nienhuis’ SOS form of the loop model, but with 
special boundary weights. For 0 < q < 4 these boundary weights are complex, so it is 
possible for them to modify the bulk behaviour. Obviously this is happening in the 
q = 1 and 3 cases mentioned above. 

In terms of the loop model transfer matrices, these boundary conditions may mean 
that not all eigenvalues contribute to the partition function. (If an eigenvector is 
‘orthogonal to the boundary vector’, then it never enters the calculation of ZLoop.) 
This must be happening in the q =  1 and 3 cases, so is presumably a general 
phenomenon. (Similar problems with using the six-vertex form of the Potts model 
have previous been observed (see Baxter 1982b).) 
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Thus not only is care necessary to select the largest eigenvalue of the loop model 
transfer matrix but one should also verify that it is a contributing eigenvalue. Even 
so, it should be possible to determine W throughout the complex q plane. As is 
remarked in 0 5 ,  this would provide interesting information on the limiting distribution 
of the zeros of the chromatic polynomial. I hope to do this. 

For sufficiently large negative values of q, the result (1.7) must be valid (with 
0 < x < 1). It may well be valid for -a < q < 0, with limiting value 

for q = 0. The contribution of the corresponding eigenvalue through q = 0 is given in 
0 5 .  If it is still the largest contributing eigenvalue, then In W is equal to the RHS of 
(5.3). This may be so for O <  q < 1, but as yet we have no independent checks, so this 
result is more speculative than (1.7) and (1.9). 

The Bethe ansatz calculation is similar to that for the regular zero-field six-vertex 
model, and hence to that for the ferromagnetic critical Potts model (though not 
sufficiently so as to suggest a simple mapping from one to the other). In both cases 
one uses Fourier series for q > 4  and Fourier integrals for O<q<4 .  This in itself 
supports Nienhuis' assumption that the zero-temperature antiferromagnetic triangular 
Potts model is critical for 0 < q < 4. The q = 2 Ising case is known to be critical (Wannier 
1950, Stephenson 1964, Nienhuis et a1 1984, Domany and Schaub 1984). 

2. Transfer matrix eigenvalue equations 

For a given loop on LZH, the arrows either make six more turns to the left than the 
right, or vice versa. Thus (1.1) is equivalent to 

ZLoop = 1 t2N-L(2 cos 6a) '  

where the sum is now over all ways of putting non-intersecting loops on LfH, P being 
the number of loops and L the number of edges covered by a loop. This is Nienhuis' 
original form for the loop model partition function, but we shall use the form (l.l), 
which has the advantage that the summand is a product of local vertex weights. 

We can construct the summand in (1.1) by assigning to each vertex of LfH a weight 
t if no arrows are incident to it, a weight e'" if thre are two arrows forming a left turn 
and a weight e-'" if they form a right turn. Draw LZH as in figure 1. It is bi-partite, 
with two types of site A and B, as indicated. The seven possible configurations at each 
type of site are shown in figure 2. Let w l ,  . . . , w ;  be the corresponding weights. 

There are three types of edge of LZH, as indicated in figure 1. Consider the b-type 
edges, with an A site on the left and a B site on the right. The partition function is 
unchanged if for every right-pointing arrow on such an edge we associate a weight b 
with its tip, b-' with its tail, and incorporate these into U , ,  . . . , w:. Similarly for 
left-pointing arrows, but with b replaced by b'; and for the other two types of edge 
with tip weights a, a' ,  c, c'. Setting exp(ia) = e, the vertex weights are then 

c'e a'e b'e a' b' c' 
01 ) . . . ,  w- I= t , - , - , - , - , -  - 

a b c ce ae 'be  

a b c ce ae be 
w : ,  . . . ,  w ; = t  - - - - - - c'e' a l e '  ble' b!' c l '  
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Figure 1. The honeycomb lattice =YH, showing its two types of sites (A and B), and three 
types of edges (a, b, c). 

W i  w i  I.13 4 w f  wii I.17 

Figure 2. The seven allowed arrow and non-arrow configurations at each type of site. 

Choosing a, b, c, a’, b’, c’= e3, e, e’, 1, e4, e*, the expressions simplify to 

col,.. . ,w,=t ,  1,1,1,s-l, 1,1 

U ; , .  * .  , w;= t, 1,1,1, s, 1,1 

where 

(2.3) 

s = e6 = exp(6ia). (2.4) 

Now instead of drawing arrows on edges, represent the edges by dotted, full, 
double-full or wiggly lines, according to figure 3. For instance, if a b-type edge contains 
no arrow, draw it as a dotted line. If it contains a left-pointing (right-pointing) arrow, 
draw it as a full (wiggly) line. Then in this picture, figure 2 is replaced by figure 4. 
We shall regard an edge as empty (occupied, doubly occupied) if it contains a dotted 
(full or wiggly, double-full) line. 

Notice that the full/wiggly lines do not terminate. If one follows a full line from 
below into a B site, it either becomes a wiggly line (in which case it moves left to the 
next A site and then goes upwards again as a full line), or it goes to the right (in which 
case it stays as a full line and can move some distance to the right before it exists 
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t i  - ........ ,+ ....... 

e -  

+ -  + =  t I  
a b c 

Figure 3. Conversion (on edge types a, b, c) from arrows and non-arrows to dotted, full, 
and double-full or wiggly lines. 

A. . . . . . . . . . .  .I. i ...... JL .L _]I ..... .L . . . . . .  L, 
t 1 1 1 5-1 1 1 

............. ..- i . ir 7 ..... rr -A....., 

t 1 1 1 5 1 1 

Figure 4. Translation of figure 2 into the line representation, showing the weights (2.3). 

upwards at an A site). In either case it is conserved: if there are n full lines in one 
row of vertical bonds, there are n in every row. 

It is permissible for two full lines to occupy the same a-type or C-type (but not 
b-type) edge. A typical arrangement of lines (with n = 4) between two successive rows 
is shown in figure 5 .  

1 2  N 

............. I ,  i ,  'L1 ........................ j I 5 ; ,  /+ ~ I ..... 
1 2  M 

Figure 5. A typical line arrangement on successive rows of YH. The numbering of the 
vertical edges is indicated. 
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Consider two successive rows of vertical edges, such as in figure 5 .  Let 4 denote 
the configuration of vertical lines in the lower row, 4' that in the upper row. Then 
the row-to-row transfer matrix V has entries 

V (  4, 4 ' )  = n (vertex weights) 

where the sum is over all allowed arrangements of full and wiggly lines on the 
intervening horizontal edges, and for each such arrangement the product is over the 
weights of the vertices in the intervening horizontal row. (There are at most two 
allowed arrangements of the intervening lines.) If LfH has L rows and M columns, 
and we use cyclic (toroidal) boundary conditions, then in the usual way (ch 2 and 7 of 
Baxter 1982a) 

ZLoop = Tr V L .  

Let A be an eigenvalue of V and g the corresponding eigenvector. Then 

A g =  Vg. (2.7) 

If Amax is the eigenvalue of largest modulus, then from (2.6), it follows that for 
large L 

3. Bethe ansatz 

Because the number of vertical lines n is the same for each row, the transfer matrix 
breaks up  into diagonal blocks, in which 4 and 4' have the same value of n. This 
means we can try to use the Bethe ansatz to solve the eigenvalue equation (2.7), rather 
as one does for the six-vertex model (Lieb and Wu 1972, Baxter 1982a). 

First consider the case n = 0, when all vertical edges are empty (dotted). Then on 
a given horizontal row, either all horizontal edges are empty or they are full. From 
figure 4 (columns 2 and 6) all the contributing vertex weights are unity, so 

3.1. n = 1 

When n = 1 there is just one full line per row of vertical edges. Let x be the position 
of the line in one row and y the position in the row above, labelling the vertical edges 
from 1 to M as in figure 5.  Then the four possible arrangements of x and y are shown 
in figure 6. Using figure 4, we find that the product of the weights of the 2 M  vertices 
in the row is 1, t 2 ,  t 2 ,  1 for the four cases, respectively. If g(x) is the entry of the 

x-I  

....... I uI . . . . . . . . . . . . .  ,A ...... JY ax 
""""'I I 

X X 

(a I ib) irl id)  

Figure 6. The four cases that arise when n = 1. 
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eigenvector g corresponding to the state with a line in position x, then from (2 .5)  the 
eigenvalue equation ( 2 . 7 )  is 

( 3 . 2 )  
y= x y = l  

for l s x s M .  
The four terms on the RHS of ( 3 . 2 )  correspond respectively to the four diagrams 

in figure 6 .  We see that ( a )  and ( b )  are similar in that they have no full horizontal at 
the boundary; we call the corresponding first two terms on the RHS of ( 3 . 2 )  the ‘left’ 
terms. Similarly the last two terms (corresponding to diagrams (c)  and ( d ) ,  with a 
full line at the boundary), we call ‘right’ terms. 

We now try as a solution 

g ( x )  = z x  ( 3 . 3 )  

and define 

A ( Z) = z-‘ + t 2 / (  1 - Z) 
p ( z ) =  l - ? / ( l - z ) .  

( 3 . 4 )  

Then the left terms in ( 3 . 2 )  give 

A(z)zX - t 2 z M + ’ / (  1 - Z )  ( 3 . 5 a )  

while the right terms give 

p ( z ) z X + t 2 z / ( 1 - z ) .  ( 3 . 5 b )  

The expressions proportional to zx are ‘wanted’, in that they are of the same type 
as the LHS of (3 .2) ;  their contribution gives 

A = A(z) + p ( z ) .  ( 3 . 6 )  

The other expressions in ( 3 . 5 )  (the ones independent of x )  are ‘unwanted boundary 
terms’. They cancel if 

Z M  = 1 .  ( 3 . 7 )  

This equation has M solutions for z. ( 3 . 6 )  then gives the M eigenvalues of V in the 
n = 1 block. 

3.2. n = 2 

When n = 2,  let x ,  , x2 be the positions of the two full lines in one row and y , ,  y ,  the 
positions in the row above. Then the general situation is that y l ,  y ,  interlace x l ,  x2. 
More precisely, if we choose x 1  s x2 and y ,  y,, then for the ‘left’ terms x, - 1 2 y 1  s x 2 ,  
x 2 - 1 s y 2 s M .  For the ‘right’terms l ~ y l s x , ,  x , - l ~ y , ~ x , .  

As is usual in the Bethe ansatz (Lieb 1967, Lieb and Wu 1972, Baxter 1982a, pp 
131-8) it is easiest to regard the y ,  and y2 summations as independent and then 
introduce correction terms to compensate for errors when y ,  2 y ,  in the summations. 

Let g ( x ,  , x 2 )  be the entry of g corresponding to lines in positions x ,  , x 2 ,  provided 
x 1  < x 2 .  Let h ( x )  be the entry when the lines are both in position x (i.e. there is a 
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double-full line on edge x). Define, for x - 1 C y  S x’, 

if x c y < x’ 2 D(x, y, x’) = t 

= 1  i f y = x - 1  ory=x’ .  

Then the eigenvalue equation (2.7) is, for 1 c x1 < x2 s M, 

y, =XI -1  yz= x*- 1 

and, for 1 s x C M, 

2829 

(3.8) 

(3.10) 
y = l  y = 1  

As for n = 1, the terms on the RHS of (3.9) and (3.10) can be grouped into ‘left’ 
and ‘right’ terms, depending on whether the horizontal boundary edge is empty or 
full. The terms up to and including +C(x2) in (3.9), and +h(x)  in (3.10), are ‘left’ 
terms. The remainder are ‘right’ terms. 

The function C(x)  incorporates the corrections to the double sums in (3.9) and is 
given by 

~ ( x )  = -g(x, x - 1) - t2g(x - 1, x - 1) - t2g(x, x )  + th(x - 1) + ts-’h(x). (3.11) 

Note that the double sums necessitate extending the function g(xl ,  x,) to the argument 
values x2 = x1 and x2 = x1 - 1. However, these are then subtracted off again via C(x).  
It follows that we can give g(x, x) and g(x, x - 1) any values we like, so long as we 
use the same ones in both (3.9) and (3.11). We need not (and shall not) require 
Ax, x)  = h(x). 

First we try, for x2 3 x1 - 1, 

g(x, ,  x2) = z;1z;2. (3.12) 

Then the first double sum in (3.9) becomes 

[A ( Z , ) Z ; ~  + p(  Z I ) Z ? ] [ A  ( z ~ ) z ?  - t 2 zY+’ / (  1 - z Z ) ] .  (3.13) 

Expanding this gives one term proportional to z;lz;2. The second double sum gives a 
similar contribution. Altogether these ‘wanted’ terms cancel out of (3.9) if 

(3.14) /i = A ( Z I M ( Z 2 )  + C L ( Z l ) P ( Z 2 ) .  

This is unaltered by interchanging z1 with z 2 ,  so we can more generally try 

g(Xl, ~ 2 )  = A12zfLz;2+ A ~ ~ z ; I z ; ~  

h(x) = E(z1z2)” 

the parameters A12,  A21,  E, zl ,  z2 being at our disposal. 

(3.15) 
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A =  

Substituting (3.15) into (3.9), all terms proportional to z;lz;2 or zglzf2 cancel 
because of (3.14). The ‘left’ terms include expressions proportional to (z lz , )%,  while 
the ‘right’ terms include ones proportional to ( z1zJx i .  Both these ‘unwanted internal’ 
terms cancel if 

(3.16) a,zA,2 + azlA2, + bB = 0 

where 

0 1 2  021 b 
a:, a;, b’ 
ay2 a;, b” 

(3.17) 

Other terms of this type, proportional to ( Z , Z , ) ~ ,  occur in (3.10). We regard A as 
given by (3.14), and then all terms in (3.10) can be naturally classified as ‘left’ or 
‘right’. To be able to continue to apply this method to large values of n, we need the 
internal unwanted terms to cancel separately in both the left and right groupings. Thus 
we require 

where 

t (  1 + S Z I Z , )  

’ Z i ( l  - z j )  

- t (  1 + S Z I Z , )  

’ z1zz(1-zi) 

a! .  = 

a !’. = 

b ’ =  1 - A ( Z l ) A ( Z 2 )  

(3.18) 

(3.19) 

All other terms in (3.9) and (3.10) arise from the y 2 ,  y = M or y , ,  y = 1 limits of 

A21 = zYA12 A,, = z y A 2 , .  (3.20) 

Those in (3.10) cancel if zf”z,” = 1, which can be seen to be a corollary of (3.20). 
We therefore want to satisfy (3.16), (3.18) and (3.20). The first two form three 

homogeneous linear equations for A,,, A,,, B, so will have non-zero solutions only 
if the determinant 

the summations. They are ‘boundary’ terms. The ones in (3.9) cancel if 

(3.21) 

(3.22) 
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Thus A does indeed vanish (for all zl, z2) provided the parameters s and t satisfy 
the relation 

s i -  s-l = 422-2 - t4. (3.23) 

From (2.4), s = exp(6ia), so (3.23) is the condition ( 1 . 3 ~ ) .  Because our t is the inverse 
of Niehuis' x, it is also Nienhuis' criticality condition, equation (20) of Nienhuis (1982). 

We can now solve (3.16) and (3.18) for A I 2 :  A,, : B. Define 

S(z, w )  = ( 1  - z - w + zw + t'z)( 1 - 2w + zw + t2w). (3.24) 

then by eliminating B we obtain 

S(Z1, z2)A,2+S(z2, ZI)A*, =o.  (3.25) 

If we define A,, = S(z2,  z l ) ,  then A I 2 ,  A,, , B are given by 

A12 = S ( Z 2 , Z I )  A,, = -S(Z, 3 z2) B =  ~ ( Z ~ - Z ~ , ) ( I + S Z ~ Z ~ ) .  (3.26) 

Substituting these results into the boundary conditions (3.20), we obtain the two 
equations 

(3.27) 

We can in principle solve these for z, and z2. (There will be many solutions, correspond- 
ing to the different eigenvalues of V.) Then A is given by (3.14). 

3.3. General values of n 

Provided the condition (3.23) is satisfied, the above working can be generalised to 
arbitrarily large values of n. The notation can become very complicated, but basically 
the calculation proceeds as for the square lattice six-vertex models (Lieb and Wu 1972, 
Baxter 1982a). 

For 1 S x, < x2 < . . . < x, S M the elements of the eigenvector are 

Ax1 I . . ., x,) = c API, ..., PnZXP(1 ' * * z h  (3.28) 
P 

where the sum is over all permutations P = { P1, . . . , Pn} of the integers 1, . . . , n. If 
cp is the sign ( + 1  or -1) of the permutation, then 

(3.29) 

where S(z, w )  is defined by (3.24). 
If two adjacent x are equal, say if x3 = x4, then the terms in (3.28) can be grouped 

in pairs, differing only in the interchange of P3 with P4. The s u m  of each pair contains 
a factor S(zp,, zp3) - S(zpj,  zp4). This should be replaced by t(Zp4-zp3)( 1 + szpjzp4) 
to obtain the correct eigenvector element. Since no more than two x can equal one 
another, this covers all cases. 

The parameters z, , . . . , z, are given by 

(3.30) 
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for J = 1, . . . , n. Then the eigenvalue A is given by 

A = A ( z , )  * * . A ( z , ) + / . L ( z ~ )  * * /.L(z,) (3.31) 

Ultimately we want to calculate the ‘partition function (or chromatic polynomial) 

2 N = 2 L M  (3.32) 

A(z) and p ( z )  being defined in (3.4). 

per site’ W, defined by (1 .5) .  Since ZH has twice as many sites as vertical edges, 

so, using (2.8), 

In W = M-‘ In A,,, . (3.33) 

4. Maximum eigenvalue 

We want to solve the equations (3.30), S(z, w )  being defined by (3.24), M the number 
of vertical bonds per row of ZH, and n the number of full lines per row. In particular, 
we want to obtain the solution corresponding to the largest eigenvalue A of the transfer 
matrix V. We require that z l , . .  . , z, be distinct, as otherwise all elements of the 
eigenvector g are given by (3.28) to be zero. 

In the limit when It1 becomes large, 1 ~ ~ 1 , .  . . , Iz,I remaining finite, (3.30) simplifies 
to 

zj” = ( - 1 ) M - I  j = 1,  . . . , n. (4.1) 

From (3.4) and (3.31), the solution of this type that maximises lAl is the one with 
n = M, z l ,  . . . , z, being uniformly distributed around the unit circle. Further, this gives 
(for M even) A = t 2M,  which is indeed the largest eigenvalue of V in the large t limit, 
corresponding to the limiting behaviour ZPotts- q N  of the colouring polynomial for 
large 4. 

In all previous Bethe ansatz calculations there has been a ‘transformation to a 
difference kernel’ (Lieb and Wu 1972) in which the ratio S (  z, w)/ S(  w, z) is transformed 
to a function only of the difference of its two arguments. This case appears to be more 
complicated, as S ( z ,  w )  is the product of two bilinear factors (rather than one, as in 
the six-vertex model (Baxter 1982a)). Even so, such a transformation does exist. Define 

(4.2) 

(4.3) 

= i e3ia 

then from (2.4), s = -r2, so from (3.23) we can choose 
t* = 2 - r - r-1. 

This is consistent with (1.3b), from which we see that the argument 4 of the chromatic 
polynomial is related to r by 

4 = 2 +  r +  r-I. (4.4) 
Now define wl,. . , w, by 

zj=(l+rwj)/(r+wj)  j = 1, . . , n. 
Then from (3.24) 

S(zI, z j )  - ( wj + nul)( w, - r2wj) 
s ( z j ,  z , ) - (wI+Twj ) (w j - r2wI ) ‘  

(4.5) 

(4.6) 
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This depends on wI and wj only via their ratio: by taking logarithms we can readily 
convert this to a difference. 

From (3.4), 

(1 + rwj)( r-' - rwj) 
( r  + wj ) (  1 - wj) 

h ( z j )  = 

r - r-'wj 
1 - wj P(z j )  =-a 

(4.7) 

For q real and positive, we see from (4.4) that r is real if q > 4, unimodular if q < 4. 
We must distinguish these cases. 

4.1. q >  4 

In this case we can choose 0 < r < 1 and define r )  so that 

r = e-" r)>o. (4.8) 

Guided by the large-t limit, we expect z l ,  . . . , z,, and hence wl, . . . , w,, to be distributed 
round the unit circle. Set 

-5- < uj s 7r. (4.9) 

Using (4.5) and (4.6), we can write zj and S ( z l ,  z j ) / S ( z j ,  z I )  as functions of uj and 
uj - uI, respectively. Let us write them as 

Wj = e-'Y 

zj = exp[ik(uj)] 

S(zl ,  z j ) / S ( z j ,  zI) = =exp[i@(uj- u l ) ] .  
(4.10) 

Then we readily find that 

m 

k ' (u)=s inhr ] / (coshr )+cosu)=1+2 c (-r)mcosmu (4.11) 
m = l  

m 

@'(U) = 2  [ rZm - ( -r)"']  cos mu. 
m = l  

(4.12) 

Note that k(  U )  is monotonic increasing: as U increases from -7r to T, so does k(  U). 
Taking logarithms of both sides of (3.30), using (4.10) and dividing by iM, we 

obtain for j = 1, .  . . , n 

n 
k ( ~ , )  = ( 2 4 +  1 - M ) T / M +  M-' 1 @ ( u ~ - u ~ )  (4.13) 

I = 1  

where I, is an integer. For q and t large we know that the largest eigenvalue is given 
by choosing 

n = M  & = j - 1 .  (4.14) 

There is no evidence to suppose that the chromatic polynomial is not analytic for 
q > 4 ,  so let us keep these choices of n and I , ,  . . . , I,. 
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In the limit of M, n large we expect U,, . . . , U, to be in increasing order and to 
form a dense distribution in the interval ( -T ,  T ) .  Let M p ( u )  du be the number of uj 
between U and U + du. Since there are M U, in the ( -  T ,  T ) ,  p (  U )  must satisfy the relation 

p ( u )  du = 1. i_: (4.15) 

Equation (4.13) now becomes 

k ( u ) = - ~ + 2 a  1' p ( v ) d v + / '  @(U-v)p(v)dv (4.16) 

for -T < U < T. This is a linear integral equation for p ( u ) .  It can readily be solved 
by differentiating with respect to U and using Fourier series, together with (4.11) and 
(4.12). We obtain 

-7r -7r 

cos mu ( - r Y  oc 

27Tp(u) = 1+2 
,,,=I 1+r2"'-(-r)"' 

which does indeed satisfy the condition (4.15). 
Using (4.7)-(4.9) and (4.17): 

(4.17) 

(4.18) 

(We have taken some liberties in expanding In( 1 -e'"), but they are justified by the 
convergence of the series in (4.17).) One obtains the same answer if one calculates 
M-I 2 In h(zj), so the two products in (3.11) are equal. (This is true for finite even 
values of M, being a consequence of the fact that z l ,  . . , 2, occur in mutually inverse 
pairs.) If we now define x so that 

x = - y = -e-'' q = q -x-x-1 - l < x < O  (4.19) 

then from (4.18), (3.31)  and (3.33),  
CO X m  - X3m 

In W = v +  1 
m ( 1 - x m + x Z m ) '  

(4.20) 

Taylor expanding the summand in powers of xm and summing term by term, we obtain 
the product form (1.7) for W. 

4.2. 3 < q < 4 

If 0 < q < 4, then from (4.4), r is unimodular. We can define 8 so that 

r = e'' o c e < T  (4.21) 
which is consistent with (1.8). 

We still expect n = M, and that z l ,  . . . , z, will be unimodular. From (4.5) it follows 
that w l , .  . . , w, will be real. In the six-vertex model (Lieb and Wu 1972, Baxter 1982a) 
they are all positive, but this is not true here. We have to be careful to correctly 
apportion the w, between the positive and negative parts of the real axis. 
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To do this, consider what happens when q is just bigger than four in the previous 

(4.22) 

where 6( U )  = ( 2 ~ ) ~ '  Z eimu is the usual 257 periodic delta function. Thus f of u l ,  . . . , U, 
lie close to 0, the other f close to v. This means that f of z,, . . . , z, are close to one 
(in fact, very close to one, the deviation being proportional to q2  rather than q), while 
5 are distributed over the unit circle. 

Assuming (as seems reasonable) that z l ,  . . . , z, do not discontinuously shift at 
q = 4, this general picture must still be true for q just less than 4, implying that f of 
w l , .  . . , w, are close to 1 and 3 are close to - 1 .  

For 0 < q < 4, if wj is positive (negative) then zj lies on the right (left) segment of 
the unit circle between e-" and eie. Define 

working. Then r is just less than one. In this limit (4.17) becomes 

p (  U )  = fS( U )  +fa (  U - 57) 

2 

w. = -epa] zj = exp[ik-(a,)] for wj < 0 
(4.23) 

wj = zj = exp[ik+(aj)] for wj > 0. 

Then we can choose the functions k + ,  k- so as to lie in the intervals (- 8, e), (8  - 257, -e), 
respectively. Logarithmically differentiating (4.5) with respect to a, we obtain, for 
y = * ,  

y sin 8 
cosh a + y cos 8 '  

k\( a )  = - (4.24) 

Similarly, we can define functions e++, e+-, a-+, @-- SO that (4.6) is 

(4.25) 

where y (  = *) is the sign of wj, 6 is the sign of wI. Provided O <  8 < 57/2, we 
can choose these functions so that they are continuous and IOyg( .)I < lye - S T ~ .  
Logarithmically differentiating (4.6), we obtain 

equivalent to 

S(Z/, zj)/S(zj, ZI) = exp[i@y*(aj - a / ) ]  

y sin 8 
6 cosh a + y  cos 8 

y sin 28 
S cosh U - y cos28' @kg(a) = + (4.26) 

Let Y+( Y-) be the set of values of j for which wj is positive (negative); let n + ( n - )  be 
the number of such values, so n = n+ + n - .  Then the analogue of (4.13) is, for y = i 
and j E  Y,, 

M k y ( ~ , ) = ( 2 1 j + l - M ) v +  @ , + ( C Y ,  - a / ) +  @ , - ( c x , - ( Y / ) .  
/ C Y +  Is Y- 

(4.27) 

The integers I j  must be distinct (modulo M ) ,  but are no longer necessarily given by 
(4.14). We determine them so as to match z l , .  . . , z, for q just less than 4 with the 
values already obtained for q > 4. 

For q > 4 ,  I,, . . . , I, increase uniformly (in unit intervals), while z l , .  . . , z, are 
ordered anticlockwise round the unit circle. However, as q + 4, f of z l ,  . . ., , z, cluster 
round unity, their deviation from it being proportional to q -4.  It follows that as q 
passes through 4, these zj reverse their ordering. These are the ones that correspond 
to wj being positive, i.e. to arg(z,) lying in the interval (-8, 8). 

This suggests that for q < 4 we can still take the I j  to be given by (4.14), provided 
we arrange the zj so that those with arguments between -57 and -8 come first, the 
arguments increasing with j ;  then come those in the interval (-8, e), but with the 
arguments decreasing with j ;  finally come those in (8, v ) ,  with increasing arguments. 
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It is convenient to combine the first and last sets, and to take zl,. . . , z,_ to have 
arguments in the interval ( 0  -277, - e ) ,  in increasing order, while z , -+~ ,  . . . , z ,  have 
arguments in (-8, e),  in decreasing order. Thus Y- is the set (1,. . . , n - }  and Y+ is 
{ n - +  1,. . . , n } .  Provided n- is even, the effect of this is simply to replace (4.14) by 

~ . = j - l - ' n  I 2 - *  (4.28) 

From (4.23), it follows that the sequences {a1,. . . , a,-} and {a,-+,, . . . , a,} are 
both increasing, in the interval (-00,oo). In the limit when n- , n + ,  n, M become large, 
we expect these aj to form two continuous distributions. Let M p , ( a )  d a  be the number 
of aj (with j E Y,) in the interval (a, a + d a ) .  Then 

(4.29) 

and (4.27) becomes the coupled pair of linear integral equations 
m 

k y ( a ) = 2 T  {:05p,(p)dp+cy+ 6 = +  1 -m @ Y ~ ( ~ - P ) P ~ ( P )  dP (4.30) 

where y = *  and c + = - n + r r / M ,  c - = - ( M + n - ) r r / M .  

tiating and using Fourier transforms (in this case Fourier integrals). Let 
As is usual with Bethe ansatz calculations, we can solve these equations by differen- 

'x 

27rpy(a) = &(x)  eiax dx  

k\(a) = l y ( x )  eiox dx 

@\6(a) = J-m 6yS(x) eiax dx. 

I-r 
05 

05 

Then we obtain, for y = i, 

From (4.24) and (4.26), provided 0 < 0 < ~ / 2 ,  

sinh Ox sinh( rr - 8)x 
sinh rrx 

i+ (x )  = -= L ( X )  = 

A A sinh Ox + sinh( T - 28)x 
@++(x) = @--(x) = 

sinh rrx 

6+-(x)  = &+(x) = - 
sinh( T - O)x + sinh 213x 

sinh rrx 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

Equations (4.32) are easily solved by summing and differencing. After some consider- 
able simplifications, we obtain 

(4.35) 
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It follows at once from (4.29) that 

n + + n - =  M n- - n+ = M / 3  (4.36) 

so n, = M/3,  n- = 2M/3. Thus we still have n = M, and f of wl, .  . . , w, are positive 
and f are negative, in agreement with the behaviour we expected near q = 4. 

Using (4.7) and the evenness of p,(a), 

cosh a - cos 28 M 

M-’ j = 1  In p ( z j )  = t  I-:‘.( c o s h a - 1  

p-( a )  da.  
++ 1: cosh a +cos 28 

cosh a + 1 
(4.37) 

Substituting the Fourier integrals (4.31) for p + ( a ) ,  the RHS becomes 

1 IW p-(x) dx. (4.38) 

Using the expressions given by (4.35) for p*,(x), (4.38) in turn becomes the same as 
the RHS of (1.9) (with x instead of k as the integration variable). Since the products 
in (3.31) are equal, for M large the LHS of (4.37) is the same as M-I In A. From (3.33) 
this is In W, so we have obtained the result (1.9). 

We have only quoted this result in 9 1 for 3 G q < 4, i.e. for 0 < 8 S ~ / 3 ,  where we 
expect W to be a continuous function of q. It is presumably valid for smaller values 
of q, though not smaller than 2, since then 8> r / 2  and the second formula in (4.34) 
ceases to be valid. 

cosh TX -cosh( T - 2 8 ) ~  A cosh 2 8 ~  - 1 A 

x s i n h ~ x  p+(x) d x  - +  I x sinh r x  -m 

5. Other real values of q 

We expect W to have singularities only at limit points (for N large) of zeros of the 
chromatic polynomial ZPotts. The above calculations are certainly correct for sufficiently 
large q. If (as seems likely) there are no limit points of zeros on the real axis for q > 4, 
then they are valid for q > 4. 

It is slightly surprising that our results have a singularity at q = 4. This seems to 
imply that q = 4  is a limit point of zeros, even though Z,,,,, is positive (and grows 
exponentially with N )  for q = 4. 

Our result (1.9) for q < 4 has been obtained by extending the q > 4 result in a 
natural way. If one analytically continues it back to q > 4 and compares it with the 
correct result, the difference is very small, proportional to 

exp[ - r 2 / 3 (  q - 4)”’]. (5.1) 
This type of essential singularity occurs in the six-vertex antiferroelectric F model 
(Lieb 1967, Lieb and Wu 1972) and is very weak. It may be that although there are 
zeros of Z,,,,, near q =4, their distribution is very sparse, so that one would have to 
consider large values of N to see them in a numerical calcuation. 

The q < 4 result is analytic for 2 < q < 4 and gives the correct trivial result for q = 3. 
This suggests that there are no limit points of zeros for 3 9 q < 4. If we accept the 
Beraha conjecture (Bevaha et a1 1980) that real limit points occur only for q =  
2 + 2  c o s ( 2 ~ / n ) ,  n being an integer, then the only remaining possible singular points 
on the real axis are q = 0, 1 ,2  and (3 + J 5 ) / 2  = 2.618.. . . Thus the result (1.9) is 
probably correct for q > 2.618. . . (i.e. for 8 < 2 ~ 1 5 )  and may be correct for q > 2. 
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5.1. q <  0 

The 'q > 4' result (1.7) is correct for sufficiently large q, positive, negative or complex. 
The Beraha conjecture (together with the analyticity of the result) suggests that it may 
be true for all negative real values of q. Certainly there is no problem in applying the 
above q > 4 working to the q < 0 case: r is now negative (between -1 and 0) and zj is 
given by (4.5) and (4.9), where ul,.  . . , U, are distributed over the interval (-IT, IT), 
with the distribution function p ( u )  given by (4.17). 

5.2. 0 < q < 1 

We can extend these negative-q results through q = 0 in much the same way as we 
extended the q > 4 results through q = 4. As r +  -1, (4.17) becomes p ( u )  = 6(u), so 
ul, . , . , U, are clustered round U = 0. The distribution has half-width proportional to 
In( - r ) ,  from which it follows that zl, . . . , z, are distributed right round the unit circle. 
For q just greater than zero it follows that w l ,  . . . , w, are all positive, so now we repeat 
the working of (4.21)-(4.38), but taking all the wj to be positive and the arguments of 
zl, . . . , z, to be increasing. 

This case is simpler than the 3 s q < 4 case discussed above and is analogous to 
the usual -1 < A  < 1 case of the six-vertex model. We replace (4.23) by wj = exp( a j ) ,  
so as to ensure that { a 1 , .  . . , a,} is an increasing sequence. The effect of this is to 
negate k : ( a )  and @:+(a). We only take y = 6 = + in (4.30) and (4.32), obtaining 

1 
'+(x) = 2 cosh( IT - 8)x - 1 ' (5.2) 

Equation (4.38) is still valid, except that the second integral (involving p*-)  does 
not occur, so 

sinh Ox sinh( IT - 0)x 
d x. J -m x sinh vx[2 cosh( IT - 8)x - 11 

M-' In A = (5.3) 

Unfortunately we have no independent calculations of W for small positive values of 
q. If A is still the numerically largest eigenvalue of the transfer matrix V ,  then (5.3) 
gives W via (3.32) (presumably from q = 0 up to the next Beraha number q = 1, i.e. 
IT > 8 > 2 1 ~ / 3 ) .  However, it is possible that another contributing eigenvalue exceeds 
this one when q increases through zero. To eliminate (or confirm) this possibility, we 
either need to prove that we have found the largest eigenvalue (which would be very 
difficult), or to make a numerical study of the eigenvalues of V and/or the zeros of 
the chromatic polynomial Z,,,,,. 

In the complex q plane, the zeros of Z,,,,, will presumably tend to be distributed 
along lines dividing the plane into domains. Once one is confident that one knows W 
inside the various domains, their boundaries (and the large N limiting distributions 
of zeros) can be obtained by comparing the form of W on opposite sides. 
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Note added in proof: The author thanks Dr V E Korepin for pointing out that the loop model of ( 1 . 1 )  and 
(1.3~1) is a special case of the solvable Izergin-Korepin three-state vertex model on a square lattice of N 
sites (Izergin A G and Korepin V E 1980 LOMI preprint E380, Leningrad; 1981 Commun. Math. Phys. 79 
303-16). 

Very recent numerical results for triangular lattices of up to eight rows and columns, with free boundary 
conditions, suggest that in the large-lattice limit the complex zeros of the chromatic polynomial form 
continuous distributions on two curves A and B, where A is approximately the circle / q  - 21 = 2; B is 
approximately an interior vertical chord of A, crossing the real axis at q = ql ,  where qr = 3.7. There are also 
isolated real zeros at the Beraha numbers q = 2 + 2  cos(27r/n)  to the left of B, i.e. for 0 6  q 6 qr .  

The curves A and B divide the complex q plane into three domains: the exterior of A, the interior to 
the right of B and the interior to the left of B. The results (1.7), (1.9) and (5 .3 )  should apply in these three 
domains, respectively; except that (5 .3)  fails at the relevant Beraha numbers (e.g. q = 3 ) ,  where W is 
discontinuous. 

For q real, this implies that (5 .3)  holds for O <  q < ql ,  q # 2 + 2  c o s ( 2 w l n ) ;  while (1.9) is true only for 
ql < q < 4. (It seems that it is an accident that (1.9) agrees with the finite-lattice q = 3 result.) It is intended 
to report and discuss these numerical results separately. 
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